Predictive Acquisition: Get Up To Speed, Then Go After Those Promising Prospects

Once upon a time, marketers got their prospects the low-tech way, buying quickly outdated lists, running expensive, scattershot campaigns, and sending generic messaging to prospects who could have been won with thoughtful personalization. Those days are over.

Enter predictive acquisition.

Put simply, predictive acquisition helps you discover net-new prospects that look like your best customers – and identify other new prospects and markets, as well. Predictive acquisition can also help you identify promising current prospects within your CRM.

Read on to discover the science behind the search and get some guidelines for success using Radius’ Predictive Acquisition solution.

Predictive Acquisition Best Practices

1. Understand Predictive Acquisition Principles and Processes

Predictive acquisition is the process of using machine learning and predictive algorithms to identify the best prospects for your marketing or sales teams to pursue.

Radius’ predictive algorithm works from two sets of data:

  • Your CRM
  • The Radius Business Graph, our comprehensive graph consisting of 50 billion dynamic signals on over 18 million U.S. businesses.

The predictive acquisition process starts when you link your CRM to Radius. We match your records to the Graph, uncovering information about each of your prospects and customers, including whether your previous marketing or sales efforts have been successful – or not.

To help Radius discover promising prospects, you need to give us information about your marketing program, such as what criteria you use to identify successful and unsuccessful campaign results from the marketing channel you currently use, with similar future programs in mind. Knowing how you define success helps Radius make meaningful comparisons between records in your CRM and records in the Graph, so we can optimize for the outcomes you want and deliver more good prospects.

Let’s take an example.

If your future goal is to convert Marketing-qualified leads (MQLs) to Sales-qualified leads (SQLs) and you want to use a direct mail campaign to do that, then the data currently in your CRM should reflect goals and channels defined the same way: prospects that have already converted (or not converted) from MQL to SQL from direct mail campaigns you’ve already run.

The Graph’s algorithm analyzes this information about your historical successes in a given channel, and translates those patterns into a query that can search beyond your CRM to find similar new records that are likely to convert by the same means. And because the Graph has richer data and deeper insights, we may also identify other net-new prospects you may not have considered, as well as existing prospects in your CRM that are worth retargeting.

2. Know Your Predictive

It’s also important to understand the differences between predictive acquisition and predictive prioritization. We’ve established here that predictive acquisition leverages historical success and customer characteristics for a given marketing channel to deliver promising prospects from your provider’s data set and your own. Predictive acquisition helps you smartly expand the top of your funnel.

Another powerful solution, predictive prioritization analyzes the same factors across customer and provider data sets, but it focuses on identifying the right prospects currently in your funnel: those you’ve already invested in, that much closer to Closed Won.

3. Align Past Success with Future Marketing Goals and Channels

Predictive Acquisition - Radius platform - Goals

As we illustrated earlier, the historical data from the records you provide should align with your future goals, and your past and future marketing channels should also be the same. The greater the similarity between your historical success and your future goals, the better predictive results you’ll get. “Apples to apples,” as they say.

4. Understand Lift and Gain

Predictive Acquisition Lift Gain Chart

Lift is predictive.

It indicates how many times more likely you are to achieve successful responses by using Radius’ recommendations than you would be if you targeted prospects without them. So, for example, a lift chart might show that if you target 40% of your prospects using our recommendations, you’re two times (2x) more likely to get successful responses than you would be if you targeted 40% of your prospects without applying our recommendations.

Gain shows the performance of a predictive model.

It indicates the total percentage of successful responses you can expect to get when targeting prospects according to our recommendations as compared with random targeting. For example, a gain chart might show that if you target 30% of your prospects using our recommendations, the expected total percentage of successful responses is 85% – versus a 30% expected total successful response if you targeted your prospects randomly.

The more prospects you target, the closer the gain line gets to the maximum possible number of successful responses: 100%.

5. Give Radius a Sizeable Data Set, Get Predictive Recommendations in Return

Radius delivers predictive acquisition with two powerful features: Recommended Segments and Segment Lift Scores. Together, they can provide a frequently refreshed list of up to 10 top recommendations ranked by predicted lift.

Predictive Acquisition - Radius platform - Recommended Segments

(1) View predicted lift and historical success for each recommended segment. (2) Identify net-new prospects and high-quality leads already in your CRM. (3) View your total addressable market and current penetration per segment. (4) Understand the characteristics associated with a high likelihood to convert. (5) Save top segments and deploy them to Salesforce or your marketing automation tool to run campaigns.

For best success with these predictive features, it’s important to share a sizeable set of data, so Radius can identify patterns that are statistically significant and have full confidence in the prospects we find and deliver. So if you’re new to your B2B market or light on data, you may need to do some hypothesis-driven acquisition first, so there’s something for the Graph’s algorithm to learn from.

Go forth…

Now that you’re up to speed with predictive acquisition, ask yourself three questions…

  1. What kinds of prospects do I want more of?
  2. Am I open to discovering new prospects and markets?
  3. Who’s worth nurturing from my current CRM?

Download our predictive acquisition data sheet to learn more today.

Marketers that have adopted predictive are 2x as likely to lead in market share and exceed revenue targets. Learn how predictive improves B2B marketing outcomes by reading this Forrester report.

Forrester Research Report - Improving B2B Marketing Outcomes With Predictive Analytics

Recommended Articles

Predictive Analytics

8 Expert Answers to "What is Predictive Analytics?"

When we commissioned Forrester Consulting to conduct a comprehensive survey of B2B marketing leaders to hear their views about predictive analytics, we were pleasantly surprised by how many were fami

John Hurley

Predictive Analytics

Determining Your Predictive Marketing Use Case

With over 61% of B2B marketing leaders already implementing solutions, it’s clear that Predictive has progressed from a nascent marketing tool to an essential solution in the marketing technology (m

John Hurley

B2B Marketing

Pepsi vs Coke: Why Marketers Shouldn’t Be Fooled By the Technology 'Taste Test'

When it comes to competition, no two brands have had a more fierce, long-standing head-to-head battle than Coke and Pepsi. In fact, historically they’ve had many famous clashes, but one in partic

John Hurley